UI & module to generate distill enrichment map plots.
Examples
library(GeneTonic)
#> Welcome to GeneTonic v3.0.0
#>
#> If you use GeneTonic in your work, please cite:
#>
#> GeneTonic: an R/Bioconductor package for streamlining the interpretation of RNA-seq data
#> Federico Marini, Annekathrin Ludt, Jan Linke, Konstantin Strauch
#> BMC Bioinformatics, 2021 - https://doi.org/10.1186/s12859-021-04461-5
#> and/or (if adopting the series of protocols as a whole)
#> Interactive and Reproducible Workflows for Exploring and Modeling RNA-seq Data with pcaExplorer, ideal, and GeneTonic
#> Annekathrin Ludt, Arsenij Ustjanzew, Harald Binder, Konstantin Strauch, Federico Marini
#> Current Protocols, 2022 - https://doi.org/10.1002/cpz1.411
#>
#> Attaching package: ‘GeneTonic’
#> The following object is masked from ‘package:carnation’:
#>
#> gs_radar
library(shiny)
# get DESeqResults object
data(res_dex, package='carnation')
# get enrichResult object
data(eres_dex, package='carnation')
# preprocess & convert to GeneTonic object
eres2 <- GeneTonic::shake_enrichResult(eres_dex)
#> Found 2483 gene sets in `enrichResult` object, of which 2483 are significant.
#> Converting for usage in GeneTonic...
gt <- enrich_to_genetonic(eres_dex, res_dex)
#> Found 2483 gene sets in `enrichResult` object, of which 2483 are significant.
#> Converting for usage in GeneTonic...
# get distilled results
df <- distill_enrichment(
eres2,
res_dex,
gt$anno_df,
n_gs = 10,
cluster_fun = "cluster_markov"
)
# number of plotted terms
args <- reactive({ list(numcat=10) })
config <- reactiveVal(get_config())
# run simple shiny app with plot
if(interactive()){
shinyApp(
ui = fluidPage(
sidebarPanel(distillPlotUI('p', 'sidebar')),
mainPanel(distillPlotUI('p', 'main'))
),
server = function(input, output, session){
numcat <- observe({
distillPlotServer('p',
reactive({ df }),
args,
config)
})
}
)
}