summary(res) prints out info; this function captures it into a dataframe
Examples
library(DESeq2)
# make example DESeq data set
dds <- makeExampleDESeqDataSet()
# run DESeq2
dds <- DESeq(dds)
#> estimating size factors
#> estimating dispersions
#> gene-wise dispersion estimates
#> mean-dispersion relationship
#> final dispersion estimates
#> fitting model and testing
# make comparisons
res <- results(dds, contrast=c('condition', 'A', 'B'))
# get summary
df <- my.summary(res, dds, alpha=0.1)